Course 115 Electrical Safety for Employees: Basic

Safety guides and audits to make your job as a safety professional easier

Protective Measures

Protect against electrical hazards
Protect against unsafe equipment, environment, and work practices.

Protect Against Electrical Hazards

Most electrical accidents result from one of the following three factors:

  • unsafe equipment or installation,
  • unsafe environment, or
  • unsafe work practices.

Some ways to prevent these accidents are through the use of insulation, guarding, grounding, electrical protective devices, and safe work practices.


Insulators such as glass, mica, rubber, or plastic used to coat metals and other conductors help stop or reduce the flow of electrical current. This helps prevent shock, fires, and short circuits. To be effective, the insulation must be suitable for the voltage used and conditions such as temperature and other environmental factors like moisture, oil, gasoline, corrosive fumes, or other substances that could cause the insulator to fail.

Types of Insulation

Insulation on conductors is often color coded. Insulated equipment on grounding conductors usually are either solid green or green with yellow stripes. Insulation covering grounded conductors is generally white or gray. Ungrounded conductors, or "hot wires," often are black or red. However, they may be any color other than green, white, or gray.

Before connecting electrical equipment to a power source, it is a good idea to check the insulation for any exposed wires or possible defects. Insulation covering flexible cords, such as extension cords, is particularly vulnerable to damage.

The insulation that covers conductors in non-construction applications is regulated by 29 CFR 1910.302 through 1910.308, Wiring Design and Protection. Subpart S generally requires insulation on circuit conductors. It also specifies that the insulation used should be suitable for the voltage and conditions. Conductors used in construction applications are regulated by 29 CFR 1926.402 through 1926.408.

1. To be effective as insulation, what criteria must be met?

a. Insulators must be tied in series
b. It must be made from conductive material
c. It must be suitable for the voltage used and conditions
d. Insulation may not conduct in a vacuum
Protect agains electrical hazards
Make sure to use guarding to prevent injuries from live parts.


Guarding involves locating or enclosing electric equipment to make sure people do not accidentally contact its live parts. Effective guarding requires equipment with exposed parts operating at 50 volts or more to be placed where it is accessible only to authorized people qualified to work with it. Recommended locations are:

  • a room, vault, or similar enclosure;
  • a balcony, gallery, or elevated platform; or
  • a site elevated 8 feet or more above the floor.

Sturdy, permanent screens also can serve as effective guards.

Conspicuous signs must be posted at the entrances to electrical rooms and similarly guarded locations to alert people to the electrical hazard and to forbid entry to unauthorized people. Signs may contain the word "Danger," "Warning," or "Caution," and beneath that, appropriate concise wording that alerts people to the hazard or gives an instruction, such as "Danger/High Voltage/Keep Out."

2. Effective guarding requires equipment with exposed parts operating at _____ to be placed where it is accessible only to authorized people qualified to work with it.

c. 10 amps or greater
d. 15 amps or 120 volts or more
a. 50 volts or more
b. up to 100 volts


Protect agains electrical hazards
Be sure to use proper grounding techniques to help prevent electrical accidents.

When you "ground" a tool or electrical system, you intentionally create a low-resistance path that connects to the earth. This prevents the buildup of voltages that could cause an electrical accident.

Grounding is normally a secondary protective measure to protect against electric shock. It does not guarantee that you won't be shocked, injured, or killed by an electrical current. It will, however, substantially reduce the risk, especially when used in combination with other safety measures discussed in this course.

1910.304, Wiring Design and Protection, requires at times a service or system ground and an equipment ground in non-construction applications. A service or system ground is designed primarily to protect machines, tools, and insulation against damage. One wire, called the "neutral" or "grounded" conductor, is grounded. In an ordinary low-voltage circuit, the white or gray wire is grounded at the generator or transformer and at the building's service entrance.

An equipment ground helps protect the equipment operator. It furnishes a second path for the current to pass through from the tool or machine to the ground. This additional ground safeguards the operator if a malfunction causes the tool's metal frame to become energized. The resulting flow of current may activate the circuit protection devices.

3. What is the intentional creation of a low-resistance path that connects to the earth?

a. Connecting
b. Deenergizing
c. Neutralizing
d. Grounding

Circuit Protection Devices

Protect agains electrical hazards
Use Ground Fault Circuit Interrupters (GFCIs).

Circuit protection devices limit or stop the flow of current automatically in the event of a ground fault, overload, or short circuit in the wiring system. Well-known examples of these devices are fuses, circuit breakers, ground-fault circuit interrupters (GFCI), and arc-fault circuit interrupters.

Fuses and circuit breakers open or break the circuit automatically when too much current flows through them. When that happens, fuses melt and circuit breakers trip the circuit open. Fuses and circuit breakers are designed to protect conductors and equipment. They prevent wires and other components from overheating and open the circuit when there is a risk of a ground fault.

Ground-fault circuit interrupters, or GFCIs, are used in wet locations, construction sites, and other high-risk areas. These devices interrupt the flow of electricity within as little as 1/40 of a second to prevent electrocution. GFCIs compare the amount of current going into electric equipment with the amount of current returning from it along the circuit conductors. If the difference exceeds 5 milliamperes, the device automatically shuts off the electric power.

Arc-fault devices provide protection from the effects of arc-faults by recognizing characteristics unique to arcing and by functioning to deenergize the circuit when an arc-fault is detected.

4. Which of the following melts when too much electrical current flows through it?

a. ground Fault Circuit Interrupters (GFCI)
b. circuit breaker
c. capacitor
d. fuse

Safe Work Practices

Protect agains electrical hazards
Be sure to use safe electrical practices.

Electrical accidents are largely preventable through safe work practices. Examples of these practices include the following:

  • deenergizing electric equipment before inspection or repair,
  • keeping electric tools properly maintained,
  • exercising caution when working near energized lines, and
  • using appropriate protective equipment.

Electrical safety-related work practice requirements for general industry are detailed in Subpart S of 29 CFR Part 1910, in Sections 1910.331–.335. For construction applications, electrical safety-related work practice requirements are detailed in Subpart K of 29 CFR Part 1926.416 to 1926.417.

5. Electrical safety-related work practices for general industry workplaces are detailed in 29 CFR _____ and for construction in 29 CFR _____.

a. 1910, 1926
b. 1915, 1920
c. 1918, 1904
d. 1907, 1910

Next Section

Protection from Energized Parts

Protect agains electrical hazards
Make sure to properly ground power tools.

A break in an electric tool's or machine's insulation can cause its metal parts to become "hot" or energized, meaning that they conduct electricity. Touching these energized parts can result in an electrical shock, burn, or electrocution.

The best way to protect yourself when using electrical tools or machines is to establish a low-resistance path from the device's metallic case to the ground. This requires an equipment grounding conductor, a low-resistance wire that directs unwanted current directly to the ground.

A properly installed grounding conductor has a low resistance to ground and greatly reduces the amount of current that passes through your body. Cord and plug equipment with a three-prong plug is a common example of equipment incorporating this ground conductor. Never use a three-prong plug if the center ground prong is missing.

Another form of protection is to use listed or labeled portable tools and appliances protected by an approved system of double insulation or its equivalent. Where such a system is employed, it must be marked distinctively to indicate that the tool or appliance uses an approved double insulation system.

6. What should be done if you see a power tool's plug with a missing center ground prong?

a. Use the tool because the plug is still safe.
b. Use the tool as it is normal.
c. Tag the tool before use.
d. Do not use it.

Protection Against Unexpected Startup

Protect agains electrical hazards
Proper lockout/tagout procedures protect you from dangers.

Proper lockout/tagout procedures protect you from the dangers of the accidental or unexpected startup of electrical equipment and are required for general industry by OSHA Standard 1910.333, Selection and Use of Work Practices. Requirements for construction applications are in 29 CFR 1926.417, Lockout and Tagging of Circuits. These procedures ensure that electrical equipment is deenergized before it is repaired or inspected and protects you against electrocution or shock.

The first step before beginning any inspection or repair job is to turn the current off at the switch box and padlock the switch in the OFF position. This applies even on so-called low-voltage circuits. Securely tagging the switch or controls of the machine or equipment being locked out of service clarifies to everyone in the area which equipment or circuits are being inspected or repaired.

Only qualified electricians who have been trained in safe lockout procedures should maintain electrical equipment. No two of the locks used should match, and each key should fit just one lock. One individual lock and key should be issued to each maintenance worker authorized to lock out and tag the equipment. All employees who repair a given piece of equipment should lock out its switch with an individual lock. Only authorized workers should be permitted to remove it.

7. Which of the following procedures protects the electrician from accidental or unexpected equipment startup?

a. Electrical release procedures
b. Lockout/tagout procedures
c. Continual monitoring of equipment status
d. Using a "buddy system" during maintenance

Protection from Overhead Power Lines

Protect agains electrical hazards
Be extra careful when working around power lines.

Before working under or near overhead power lines, ensure that you maintain a safe distance to the lines and, for very high-voltage lines, ground any equipment such as cranes that can become energized. If working on power lines, ensure that the lines have been deenergized and grounded by the owner or operator of the lines. Other protective measures like guarding or insulating the lines help prevent accidental contact.

Employees unqualified to work with electricity, as well as mechanical equipment, should remain at least 10 feet away from overhead power lines. If the voltage is more than 50,000 volts, the clearance increases by 4 inches for each additional 10,000 volts.

When mechanical equipment is operated near overhead lines, employees standing on the ground should avoid contact with the equipment unless it is located outside the danger zone. When factoring the safe standoff distance, be sure to consider the equipment's maximum reach.

Click on the button below to see best practices when exposed or working around powerlines.

Remember these important safe practices when working around downed power lines:

  • Do NOT assume that a downed conductor is safe simply because it is on the ground or it is not sparking.
  • Do NOT assume that all coated, weatherproof or insulated wire is just telephone, television or fiber-optic cable.
  • Low-hanging wires still have voltage potential even if they are not touching the ground. So, don't touch them. Everything is energized until tested to be de-energized.
  • Never go near a downed or fallen electric power line. Always assume that it is energized. Touching it could be fatal.
  • Electricity can spread outward through the ground in a circular shape from the point of contact. As you move away from the center, large differences in voltages can be created.
  • Never drive over downed power lines. Assume that they are energized. And, even if they are not, downed lines can become entangled in your equipment or vehicle.
  • If contact is made with an energized power line while you are in a vehicle, remain calm and do not get out unless the vehicle is on fire. If possible, call for help.
  • If you must exit any equipment because of fire or other safety reasons, try to jump completely clear, making sure that you do not touch the equipment and the ground at the same time. Land with both feet together and shuffle away in small steps to minimize the path of electric current and avoid electrical shock. Be careful to maintain your balance.

8. If you must exit a vehicle because of fire when contact is made with an energized power line, _____.

a. get out and walk quickly away from the vehicle
b. get out and hop on one foot away from the car
c. jump clear, land with both feet on the ground, and shuffle away
d. climb on top of the car and jump off and run quickly away

Electrical Protective Equipment

Protect agains electrical hazards
Electrician using insulated gloves.

Employees who work directly with electricity should use the personal protective equipment required for the jobs they perform. This equipment may include rubber insulating gloves, hoods, sleeves, matting, blankets, line hose, and industrial protective helmets that are designed to reduce electric shock hazard. All of these help to reduce the risk of electrical accidents. General safe practices include:

  • Electrical protective equipment must be periodically tested in accordance with the test tables found in OSHA 1910.137, Electrical Protective Equipment.
  • Insulating equipment must be inspected for damage before each day's use. Insulating equipment found to have other defects that might affect its insulating properties shall be removed from service and returned for testing.
  • The arc-rated protective clothing and other protective equipment generally must cover the worker's entire body, except for hands, feet, head and face, which may be protected by other PPE.


Appropriate and properly maintained tools help protect workers against electric hazards. It's important to maintain tools regularly because it prevents them from deteriorating and becoming dangerous. Check each tool before using it. If you find a defect, immediately remove it from service and tag it so no one will use it until it has been repaired or replaced.

When using a tool to handle energized conductors, check to make sure it is designed and constructed to withstand the voltages and stresses to which it has been exposed.

9. Insulating equipment, such as electrical protective gloves, found defective must be _____.

a. thrown away and never used again
b. taken out of service until repaired and retested
c. checked and used carefully
d. evaluated for changes in color or texture

Training Requirements

Protect agains electrical hazards
Only competent and trained workers should work on electrical circuits.

All employees should be trained to be thoroughly familiar with the safety procedures for their particular jobs. Moreover, good judgment and common sense are integral to preventing electrical accidents. When working on electrical equipment, for example, some basic procedures to follow are to:

  • Assume all overhead wires are energized at lethal voltages. Never assume that a wire is safe to touch even if it is down or appears to be insulated.
  • Never touch a fallen overhead power line. Call the electric utility company to report fallen electrical lines.
  • Stay at least 10 feet away from overhead wires during cleanup and other activities. If working at heights or handling long objects, survey the area before starting work for the presence of overhead wires.
  • If an overhead wire falls across your vehicle while you are driving, stay inside the vehicle and continue to drive away from the line. If the engine stalls, do not leave your vehicle. Warn people not to touch the vehicle or the wire. Call or ask someone to call the local electric utility company and emergency services.
  • Never operate electrical equipment while you are standing in water.
  • Never repair electrical cords or equipment unless qualified and authorized.
  • Have a qualified electrician inspect electrical equipment that has gotten wet before energizing it.
  • If working in damp locations, inspect electric cords and equipment to ensure that they are in good condition and free of defects, and use a ground-fault circuit interrupter (GFCI).
  • Always use caution when working near electricity.

10. How far should workers, or their equipment, stay away from overhead wires during cleanup and other activities?

a. No less than 3 feet
b. Between 3 and 5 feet
c. At least 10 feet
d. Between 5 and 15 feet

Check your Work

Read the material in each section to find the correct answer to each quiz question. After answering all the questions, click on the "Check Quiz Answers" button to grade your quiz and see your score. You will receive a message if you forgot to answer one of the questions. After clicking the button, the questions you missed will be listed below. You can correct any missed questions and check your answers again.


This is an excellent electrical presentation by Rodney Sherman given at Holy Cross Energy. It will make a believer out of you. Note: The instructor is able to touch the wires with his bare hands at time because he has turned the power off to the display. The switch is behind the red barn. You can see him from time to time reach behind the barn to turn power on and off.

OSHAcademy Ultimate Guide Banner Ad